Student's Name	•	Teacher's Code:	

Saint Ignatius' College, Riverview Mathematics Assessment Task 2021

Year 12		
Mathematics		
Task 4		
Trial HSC Replacement Task		
Date: 27 th August 2021		

General Instructions:	Format:	
 Reading time: 5 minutes Time Allowed: 2 hours Write using blue or black pen only NESA approved calculators may be used Attempt all questions in the space provided on the paper Write your name and your teacher's code in the positions indicated Marks may not be awarded for missing or carelessly arranged working. 	Section C	14 Marks 15 Marks 16 Marks 11 Marks
Teachers: • Mr N Mushan • Mr P Collins • Dr M Furtado NHM PPC MXF	Section E Short Answer	14 Marks
Mrs F YatesMr J NeweyJPN	Total	70 Marks

SECTION A (14 Marks) (5

(Start a new booklet)

- (a) Find the equation of the tangent to the curve $y = (1-5x)^{-1}$ at the point (0, 1).
- (b) Differentiate $y = \frac{\ln(x^3)}{2}$ with respect to x. (2)
- (c) Differentiate $y = \frac{e^{2x}}{\cos x}$ with respect to x. (2)
- (d) Evaluate $\int_0^{\frac{\pi}{3}} (x + \sin x) dx.$ (2)
- (e) The function y = f(x) is continuous for all values of x. (2)

The following is known of the function's properties.

- x > -2, f'(x) < 0, f''(x) < 0
- x < -2, f'(x) < 0, f''(x) > 0
- f(-2) = f'(-2) = f''(-2) = 0

Sketch the graph of y = f(x), labelling any x-intercepts in your own booklet.

(f) Solve the equation
$$\ln x - \frac{6}{\ln x} = 1$$
 (3)

END OF SECTION A

SECTION B

(15 Marks)

(Start a new booklet)

(a) An infinite geometric series has a first term of 12 and a limiting sum of 15. (2)

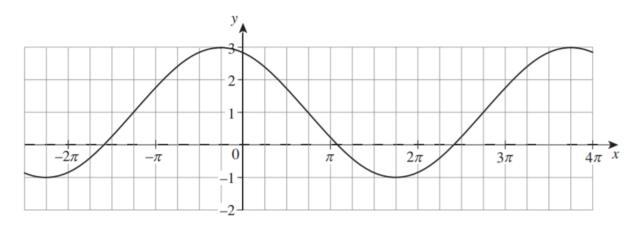
What is the common ratio?

(b) A function f(x) is given by:

$$f(x) = \begin{cases} \frac{3}{4}(x-2)(4-x) & \text{if } 2 \le x \le 4\\ 0 & \text{if } x < 2 \text{ or } x > 4 \end{cases}$$

- (i) Show this curve is a probability density function. (2)
- (ii) Find the Mode. (2)
- (c) (i) Draw the graph of $y = -\sqrt{4-x^2}$ and shade the area bounded by the function and the x axis where $x \le 0$.

The table gives the values of $y = -\sqrt{4-x^2}$ for x.


х	-2	-1.5	-1	-0.5	0
y	0	-1.3	-1.7	-1.9	-2

- (ii) By using the above table of values or otherwise, use the trapezoidal rule with 4 sub-intervals to find an approximation of the shaded area.
- (iii) How could a better approximation of the shaded area be obtained using the trapezoidal rule? (1)

SECTION B is continued on next page

(2)

(d) The graph is a function of the form $y = k \sin(a(x+b)) + c$.

Consider the equation of the function, to determine the values of k, a, b and c

(4)

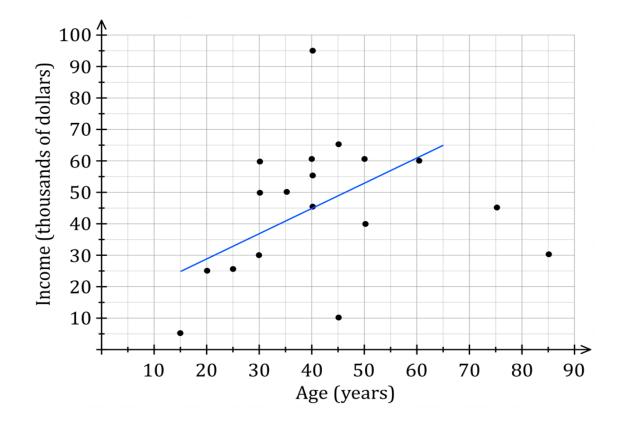
END OF SECTION B

SECTION C

(16 Marks)

(Start a new booklet)

(a) Let X be a normally distributed random variable with mean 6 and variance 9 and let Z be the random variable with the standard normal distribution.


(i) Find
$$P(X > 6)$$
. (1)

(ii) Find b such that
$$P(X > 8) = P(Z < b)$$
. (2)

- (b) For events A and B from a sample space, $P(A|B) = \frac{1}{5}$ and $P(B|A) = \frac{1}{4}$. Let $P(A \cap B) = p$.
 - (i) Find P(A) in terms of p. (1)
 - (ii) Find P (A' \cap B') in terms of p. (2)
 - (iii) Given that $P(A \cup B) \le \frac{1}{5}$, state the largest possible interval for p. (2)

SECTION C is continued on next page

(c) A sample of 18 randomly selected people were asked to state their Age (in years) and their income (in \$1000). The results are displayed in the scatterplot below with the line of best fit drawn through (15, 25) and (65, 65).

- (i) Calculate the gradient of the line of best fit shown. (2)
- (ii) What is the equation of the line of best fit shown? (1)
- (iii) Use your equation to calculate the expected income of an 80-year-old person. (1)
- (iv) Comment on your result in part (iii). (1)
- (d) (i) Without using calculus, sketch $y = \ln x$ in your booklet. (1)
 - (ii) On the same sketch in part (a), find, graphically, the number of solutions (2) to the equation $\ln x x = -2$. State the number of solutions in your booklet.

END OF SECTION C

SECTION D

(11 Marks)

(Start a new booklet)

(a) A chemical substance being made in a laboratory will be airlifted by helicopter to a hospital immediately after it is completed. The substance decomposes and the amount M in kilograms present at any time t hours is given by $M = Ae^{kt}$ where A and k are constants.

If $\frac{1}{4}$ of the mass of this substance is present after 4 hours and 4 kg of this substance will reach the hospital in 6 hours.

- (i) Show the exact value of $k = -\frac{1}{4}\ln(4)$ (2)
- (ii) Find the value of A, the original mass of the chemical substance. (2)
- (b) An open cylindrical water tank has base radius x metres and height h metres.

Each square metre of the base costs a dollars to manufacture and each square metre of the curved surface costs b dollars, where a and b are constants.

The combined cost of the base and curved surface is *c* dollars.

- (i) Find c in terms of a, b, x and h. (1) (Note that the curved surface has area $2\pi xh$.)
- (ii) Show that the volume V of the tank in cubic metres is given by (2)

$$V = \frac{x}{2b}(c - \pi ax^2)$$

(iii) If x can vary, prove that V is maximised when the **cost of the base** is $\frac{c}{3}$ dollars. (4)

END OF SECTION D

SECTION E (14 Marks)

(Start a new booklet)

- (a) Alison decides to start saving for a deposit for a new apartment by investing \$1000 into a bank account at the start of every month. Interest is paid at a rate of 3% per annum compounded monthly.
 - (i) Show that the amount in A_n in the account after n months is: (2)

$$A_n = 401000(1.0025^n - 1)$$

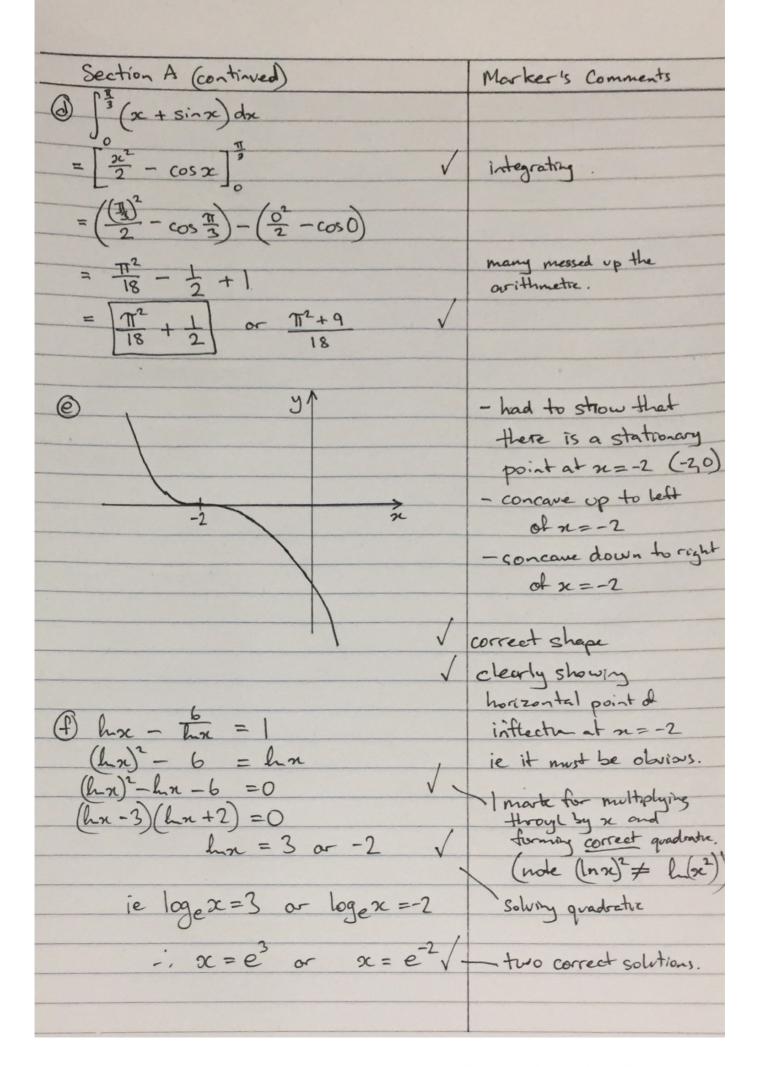
- (ii) Calculate the amount in the account at the end of 12 months. (1) Give your answer to the nearest dollar.
- (iii) Determine how many deposits in total Alison will have made when her account first exceeds \$60 000.
- (iv) After twelve months Alison changes her contributions to \$1500 per month.

 Determine if Alison will have saved \$60 000 by the end of the third year.

 Justify your answer.
- (b) Show that $x = \frac{\pi}{3}$ is a solution of $\sin x = \frac{1}{2} \tan x$ (1)
 - (ii) On the same set of axes, sketch the graphs of the functions $y = \sin x \text{ and } y = \frac{1}{2} \tan x \quad \text{for } -\pi \le x \le \pi.$
 - (iii) Hence find all solutions of $\sin x = \frac{1}{2} \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. (2)
 - (iv) Use your graphs to solve $\sin x \le \frac{1}{2} \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. (2)

END OF PAPER

Student's Name:	Teacher's Code:	


SUGGESTED SOLUTIONS

Saint Ignatius' College, Riverview Mathematics Assessment Task 2021

Year 12		
Mathematics		
Task 4		
Trial HSC Replacement Task		
Date: 27 th August 2021		

General Instructions:	Format:
 Reading time: 5 minutes Time Allowed: 2 hours Write using blue or black pen only NESA approved calculators may be used Attempt all questions in the space provided on the paper Write your name and your teacher's code in the positions indicated Marks may not be awarded for missing or carelessly arranged working. 	Section A Short Answer Section B Short Answer Section C Short Answer Section D 14 Marks 15 Marks 16 Marks 16 Marks 17 Marks
Teachers: • Mr N Mushan • Mr P Collins • Dr M Furtado • Mrs F Yates • Mr J Newey Teachers: NHM PPC MXF FEY JPN	Short Answer Section E Short Answer Total Total 14 Marks To Marks

SECTION A	
Worked Solution	Marker's Comments
$y' = -1(1-5x)^{-2}x-5$ = $5(1-5x)^{-2}$ or $(1-5x)^{2}$	I mark for differentiating
When $3c=0$ $M_{tayort} = \frac{5}{(1-5\pi 0)^2} = 5$	I mark for gradient of tangent
taget = (-500)2	,
equation of tangent	
y-1 = 5(20-0)	
y-1 = 5x $y = 5x + 1$ or $5x-y+1=0$	I mark for equation of tangent.
y = 500 TI 60 500 J	
	reasonably well done
$b y = \frac{\ln(x^3)}{2}$	Alternative Solution
$= \frac{1}{2} \ln(x^{3})$	y=3hn /
$y' = \frac{1}{2} \times \frac{3n^2}{2^3}$	
$y = \frac{2}{3nc^2}$ $= \frac{3nc^2}{2nc^3}$	$y' = \frac{3}{2} \times 2$ $y' = \frac{3}{2} \times 2$
$= \frac{3}{2\pi}$	many failed to
- 224	Simplify expression.
	(: lost a mark).
0 -	
$\bigcirc y = \frac{e^{2x}}{\cos x}$	
e y cos x	
let $u=e^{2x}$ $V=\cos x$	
$u' = 2e^{2\pi} \qquad v' = -\sin \pi \qquad \sqrt{}$	I mark for correctly
W 20	finding u' and v'.
$u' = 2e^{2x}\cos x + e^{2x}\sin x$	correctly substituting
$y' = \frac{2e^{2x}\cos x + e^{2x}\sin x}{\cos^2 x}$	into product rule.
$u' = e^{2x} \left(2 \cos x + \sin x \right)$	- some furgot v2
$y' = \frac{e^{2\pi} \left(2\cos \pi + \sin \pi \right)}{\cos^2 \pi}$	- some mixed up signs.

Section B

Solutions & Comments

a)
$$a=12$$
 $S\infty = a$
 $S\infty = 15$ $1-T$

15 = 12

$$15 - 15\tau = 12$$

$$-15\tau = -3$$

$$\tau = \frac{1}{5}$$

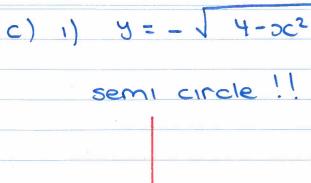
1) Prove
$$\int_{2}^{4} f(\infty) d\infty = 1$$

$$\int_{2}^{3} \frac{3}{4} (\infty - 2) (4 - \infty) d\infty$$

$$= \frac{3}{4} \int_{0}^{4} -3c^{2} + 6xc - 8 dx$$

$$= \frac{3}{4} \left[-\frac{3}{3} + 3x^2 - 8x \right]_{1}^{4}$$

$$= \frac{3}{4} \left[\left(-\frac{64}{3} + 48 - 32 \right) - \left(-\frac{8}{3} + 12 - 16 \right) \right]$$


$$= \frac{3}{4} \left[-\frac{16}{3} + \frac{20}{3} \right]$$

=
$$\frac{3}{4} \times \frac{4}{3}$$
 show $f(\infty)$ 7,0

$$= 1$$
 $f(00) = f(4) = 0$

60 PDF
$$f(\infty) 70 2 < 0 < 4$$

 $f(0 < 0) 7 = 0 2 < 0 < 4$

11) mode -highest pt on $f(\infty)$ * not well in domain done memod one $f(\infty) = \frac{3}{4} (\infty - 2)(4 - \infty)$ * mony $=\frac{3}{4}(4\infty-x^2-8+2\infty)$ found the y value $=\frac{3}{4}\left(-\infty^2+6\infty-8\right)$ not ac value Axs of Sym = -b2a concave DWO parabola!! 7 L 7c=3 oo mode is 3. OR use calculus memod Two $f(\infty) = \frac{3}{4}(-\infty^2 + 6\infty - 8)$ $f'(\infty) = \frac{3}{4} \left(-2\infty + 6 \right)$ $\frac{3}{4}(-2\infty+6)=0$ $-2\infty = -6$ $f''(c) = -\frac{3}{2} < 0 \quad max$

11) Trapezoiosi Rule

$$A = \frac{h}{2} \left[f(a) + 2(f....) + f(b) \right]$$

$$= 0.5 \left[0 + 2(1.3 + 1.7 + 1.9) + 2 \right]$$

function values regard

- this is how to make trapezoidal rule more effective.

Most Popular Also
$$a = \frac{1}{2} \qquad a = -\frac{1}{2}$$

$$b = -3\pi$$

$$4$$

$$b = -3\pi$$

$$4$$

$$K=2$$
 $K=2$ $K=-2$ $C=1$ $C=1$

Learn Your Basic Graphs!!

* Atrocious!!

* V semicircle

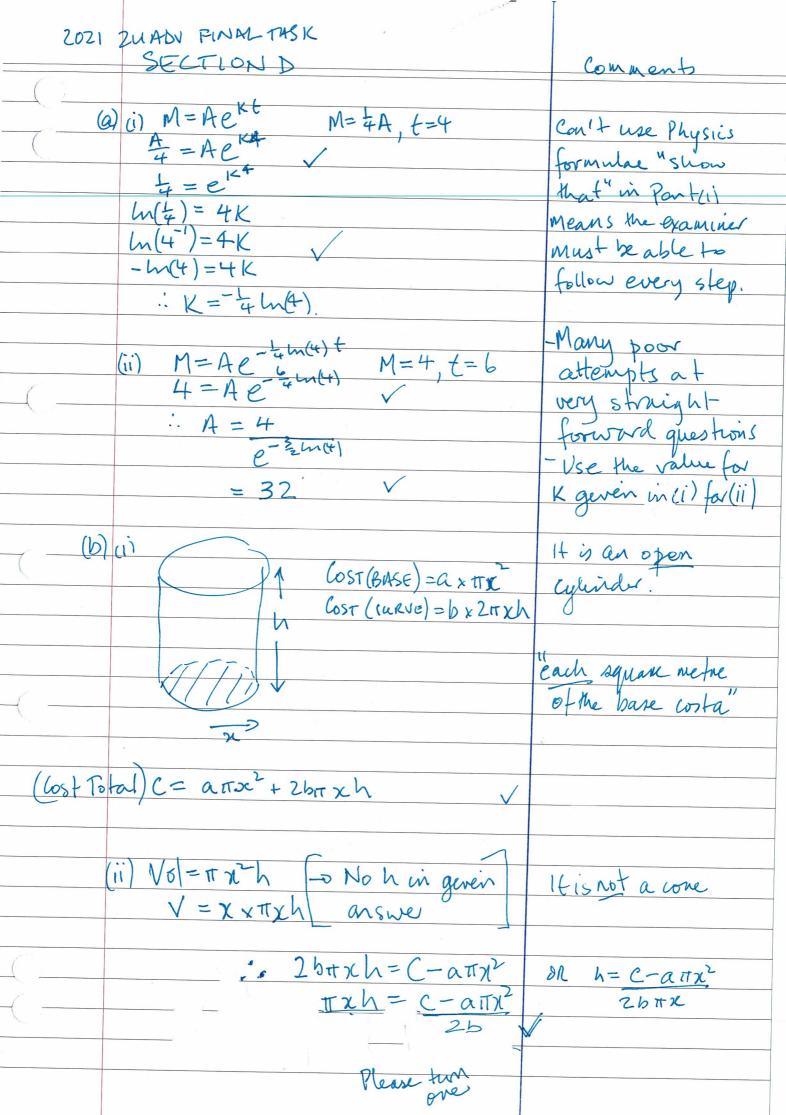
* √ shaded LHS

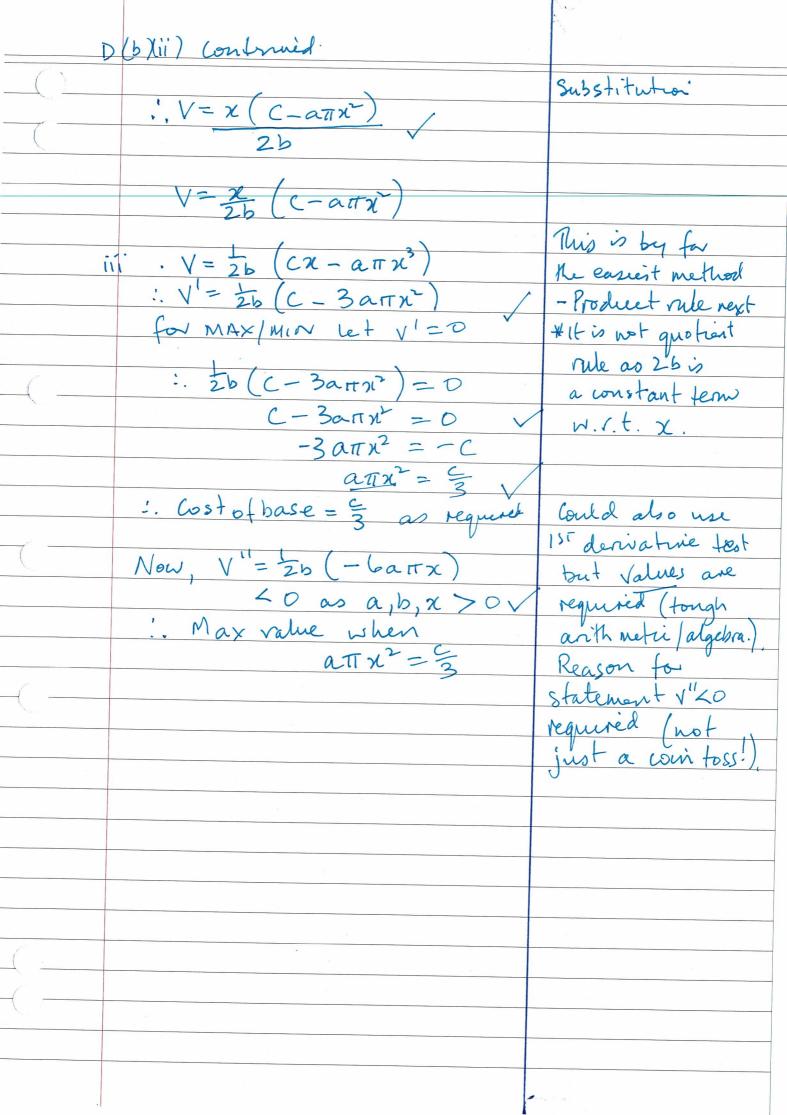
- failure by

many to see it was a semi circle!

* too many
weren't sure
how to
deal with
negatives!
Ianare them!!

* done ox by most!


* Not to badly done!!


SECTION C	16 MARKS.	Marker's
(OS (C) P(X>6) M=	6,0=9=.500=	3 Comments.
(
-2 +3		
34 6	8 9	Its 50-50
() P(x) P(x>6) = 5	010 0000	from the media
(ii) P(XX8) = B(Z<1	o) = P(x<4) by	Symmetry
from above: x		Notmany
$Z = \chi - \mu$	= 4-6 = -2	realised that
∴ b = -2		you had to
3	·	find Z
(b) (i) P(A) = ? P(B	(A) = P(ANB) P(A)	
r e	. P(A) = P(AnB) = P	
	P (18/A) 4	
	= 47	V
(i) P(A'AB') A	B	
3P (r	1-8P	/_
P(A) = 4P : P(B) = 0	5P	Not well done
: P(A' NB') = 1-	-8P	
OR P(A' AB') = P(AU	B) = 1- P(AUB)	
	= 1-8P.	Ä
in 058855		
: 0 < P < \frac{1}{40}	or P= (0, 40]	
ou may ask for an extra Writing Bookle	et if you need more space to answ	ver this question

You may ask for an extra Writing Booklet if you need more space to answer this question.

ARKS Marker's
-75 Comments.
show Overall this
y question was
well answered
Points
5+15
+15
80 V
true
ation.
Sketch
He lux graph
) '
Solutions had
to be Seen on
the graph for
2 Marks
2 Solutions william
marks.

You may ask for an extra Writing Booklet if you need more space to answer this question.

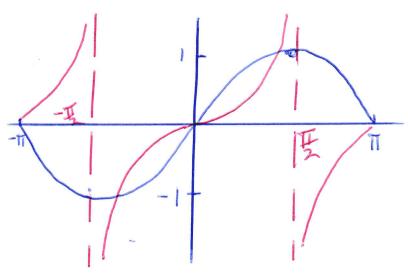
SECTION E. a) i) After month.... Well A1 = 1000 (1.0025) Az = (A1 + 1000) (1.0025) = 1000 (1-0025)2+ 1000 (1-0025) wh " A" = 1000 (1.0025)"+ --- +1000 (1003) = 1000 [1.0025 n + 1.0025 n -1 + 1.0025] = 1000 | 1.0025 + 100252 + -- . + 1.00254] =401000 (1.0025" -1) ii) let n= 12 Well done A12 = 401000 (1-002512 -1) -\$12197 - lmk lii) 60000 = 401000 (1.0025^1_1) Well done 0-1496 = 1-00254-1 Working 1-0025" = 1-1496 N = 55.8 00 56 DEPOSITSF

$$A_1 = 12197 (1.0025)^{24}$$

$$= $12950.25 \leftarrow |mk|$$

b) i) When
$$\mathcal{K} = \frac{\mathbb{I}}{3}$$

$$\lim_{\lambda \to \infty} \frac{\mathbb{I}}{3} = \frac{\mathbb{I}}{3} (\mathbb{I}_{3})$$


$$\lim_{\lambda \to \infty} \frac{\mathbb{I}}{3} = \frac{\mathbb{I}}{3} (\mathbb{I}_{3})$$

$$\lim_{\lambda \to \infty} \mathbb{I}_{3} = \frac{\mathbb{I}}{3} (\mathbb{I}_{3})$$

Poorly done ignored (A) Assumed it Carned No Interest

lonk

Many went to a lot at trouble to de something. so simple ii)

$$y = S_{insc}$$

 $y = \frac{1}{a} ton x$

Well done
Ink for
each Fory
Correct
graph.
Some did
not use

iii) Smx = \frac{1}{2} Jonse

 $\chi = -\frac{\pi}{3}$, O $\frac{\pi}{3}$

Too many Missed X20 3 soh's = 2 mk 2 solus = 1 mk

Correct domain

IV) Sin ic & = tonx for
-I 2 XXI

Poorly done

 $-\frac{11}{3}$ $\leq 20 \leq 0 \leq$

亚台化人亚

luk

link